Inhoud
In de natuurkunde is een periode de hoeveelheid tijd die nodig is om een cyclus te voltooien in een oscillerend systeem zoals een slinger, een massa op een veer of een elektronisch circuit. In één cyclus beweegt het systeem van een startpositie door maximum- en minimumpunten en keert vervolgens terug naar het begin voordat een nieuwe, identieke cyclus wordt gestart. U kunt de factoren identificeren die de oscillatieperiode beïnvloeden door de vergelijkingen te onderzoeken die de periode voor een oscillerend systeem bepalen.
De slingerende slinger
De vergelijking voor de periode (T) van een slingerende slinger is T = 2π√ (L ÷ g) waarbij π (pi) de wiskundige constante is, L de lengte van de arm van de slinger is en g de versnelling van de zwaartekracht is op de slinger. Onderzoek van de vergelijking onthult dat de oscillatieperiode recht evenredig is met de lengte van de arm en omgekeerd evenredig met de zwaartekracht; aldus leidt een toename van de lengte van een slingerarm tot een daaropvolgende toename van de oscillatieperiode bij een constante zwaartekrachtversnelling. Een afname in lengte zou dan resulteren in een afname van de periode. Wat de zwaartekracht betreft, toont de omgekeerde relatie dat hoe sterker de zwaartekrachtversnelling, hoe korter de periode van oscillatie. De periode van een slinger op aarde zou bijvoorbeeld korter zijn in vergelijking met een slinger van gelijke lengte op de maan.
Mis op een lente
De berekening voor de periode (T) van een veer die oscilleert met een massa (m) wordt beschreven als T = 2π√ (m ÷ k) waarbij pi de wiskundige constante is, m de massa is die aan de veer is bevestigd en k de veer is constant, wat verband houdt met de 'stijfheid' van een veer. De oscillatieperiode is daarom recht evenredig met de massa en omgekeerd evenredig met de veerconstante. Een stijvere veer met een constante massa verkort de oscillatieperiode. Het vergroten van de massa verhoogt de oscillatieperiode. Een zware auto met veren in de ophanging stuitert bijvoorbeeld langzamer wanneer hij een botsing raakt dan een lichte auto met identieke veren.
Golf
Golven zoals rimpelingen in een meer of geluidsgolven die door de lucht reizen, hebben een periode gelijk aan de wederkerige frequentie; de formule is T = 1 ÷ f waarbij T de periode van oscillatie is en f de frequentie van de golf is, meestal gemeten in Hertz (Hz). Wanneer de frequentie van een golf toeneemt, neemt de periode af.
Elektronische oscillatoren
Een elektronische oscillator genereert een oscillerend signaal met behulp van elektronische schakelingen. Vanwege de grote verscheidenheid aan elektronische oscillatoren zijn de factoren die de periode bepalen afhankelijk van het circuitontwerp. Sommige oscillatoren stellen bijvoorbeeld de periode in met een weerstand aangesloten op een condensator; de periode hangt af van de waarde van de weerstand in ohm vermenigvuldigd met de capaciteit in farads. Andere oscillatoren gebruiken een kwartskristal om de periode te bepalen; omdat kwarts zeer stabiel is, stelt het de periode van een oscillator met grote precisie in.