Hoe de vergelijking van een spreidingsdiagram te vinden

Posted on
Schrijver: Louise Ward
Datum Van Creatie: 3 Februari 2021
Updatedatum: 20 November 2024
Anonim
writing an Equation for a Line of Best Fit on a Scatterplot
Video: writing an Equation for a Line of Best Fit on a Scatterplot

Inhoud

Een spreidingsplot is een grafiek die de relatie tussen twee gegevenssets laat zien. Soms is het handig om de gegevens in een spreidingsplot te gebruiken om een ​​wiskundige relatie tussen twee variabelen te verkrijgen. De vergelijking van een spreidingsplot kan met de hand worden verkregen, op twee manieren: een grafische techniek of een techniek die lineaire regressie wordt genoemd.

Een spreidingsplot maken

Gebruik ruitjespapier om een ​​spreidingsplot te maken. Teken de x- en y-assen, zorg ervoor dat ze elkaar kruisen en label de oorsprong. Zorg ervoor dat de x- en y-assen ook de juiste titels hebben. Teken vervolgens elk gegevenspunt in de grafiek. Alle trends tussen de geplotte gegevenssets moeten nu duidelijk zijn.

Lijn van de beste pasvorm

Zodra een spreidingsplot is gemaakt, ervan uitgaande dat er een lineaire correlatie is tussen twee gegevenssets, kunnen we een grafische methode gebruiken om de vergelijking te verkrijgen. Neem een ​​liniaal en trek een lijn zo dicht mogelijk bij alle punten. Probeer ervoor te zorgen dat er net zoveel punten boven de lijn zijn als er onder de lijn zijn. Nadat de lijn is getekend, gebruikt u standaardmethoden om de vergelijking van de rechte lijn te vinden

Vergelijking van rechte lijn

Zodra een best passende lijn op een spreidingsgrafiek is geplaatst, is het eenvoudig om de vergelijking te vinden. De algemene vergelijking van een rechte lijn is:

y = mx + c

Waar m de helling (gradiënt) van de lijn is en c het y-snijpunt is. Zoek twee punten op de lijn om het verloop te verkrijgen. Laten we voor dit voorbeeld aannemen dat de twee punten (1,3) en (0,1) zijn. Het verloop kan worden berekend door het verschil in de y-coördinaten te nemen en te delen door het verschil in de x-coördinaten:

m = (3 - 1) / (1 - 0) = 2/1 = 2

De gradiënt is in dit geval gelijk aan 2. Tot nu toe is de vergelijking van de rechte lijn

y = 2x + c

De waarde voor c kan worden verkregen door de waarden te vervangen door een bekend punt. Volgens het voorbeeld is een van de bekende punten (1,3). Steek dit in de vergelijking en herschik voor c:

3 = (2 * 1) + c

c = 3 - 2 = 1

De laatste vergelijking is in dit geval:

y = 2x + 1

Lineaire regressie

Lineaire regressie is een wiskundige methode die kan worden gebruikt om de lineaire vergelijking van een spreidingsdiagram te verkrijgen. Begin met het plaatsen van uw gegevens in een tabel. Laten we voor dit voorbeeld aannemen dat we de volgende gegevens hebben:

(4.1, 2.2) (6.5, 4.5) (12.6, 10.4)

Bereken de som van de x-waarden:

x_sum = 4,1 + 6,5 + 12,6 = 23,2

Bereken vervolgens de som van de y-waarden:

y_sum = 2.2 + 4.4 + 10.4 = 17

Tel nu de producten van elke gegevenspuntset op:

xy_sum = (4.1 * 2.2) + (6.5 * 4.4) + (12.6 * 10.4) = 168.66

Bereken vervolgens de som van de x-waarden in het kwadraat en de y-waarden in het kwadraat:

x_square_sum = (4.1 ^ 2) + (6.5 ^ 2) + (12.6 ^ 2) = 217.82

y_square_sum = (2.2 ^ 2) + (4.5 ^ 2) + (10.4 ^ 2) = 133.25

Tel tot slot het aantal datapunten dat u hebt. In dit geval hebben we drie gegevenspunten (N = 3). Het verloop voor de best passende lijn kan worden verkregen bij:

m = (N * xy_sum) - (x_sum * y_sum) / (N * x_square_sum) - (x_sum * x_sum) = (3 * 168.66) - (23.2 * 17) / (3 * 217.82) - (23.2 * 23.2) = 0,968

De onderschepping voor de best passende lijn kan worden verkregen bij:

c = (x_square_sum * y_sum) - (x_sum * xy_sum) / (N * x_square_sum) - (x_sum * x_sum)

= (217.82 17) - (23.2 168.66) / (3 * 217.82) - (23.2 * 23.2) = -1.82

De uiteindelijke vergelijking is daarom:

y = 0.968x - 1.82