Hoogte en snelheid berekenen

Posted on
Schrijver: Monica Porter
Datum Van Creatie: 20 Maart 2021
Updatedatum: 18 November 2024
Anonim
Snelheid, afstand en tijd - snelheden omrekenen (havo/vwo A) - WiskundeAcademie
Video: Snelheid, afstand en tijd - snelheden omrekenen (havo/vwo A) - WiskundeAcademie

Inhoud

Projectielbewegingsproblemen komen vaak voor bij natuurkundig onderzoek. Een projectiel is een object dat langs een pad van het ene punt naar het andere beweegt. Iemand kan een object in de lucht gooien of een raket lanceren die zich via een parabolisch pad naar zijn bestemming verplaatst. Een projectielenbeweging kan worden beschreven in termen van snelheid, tijd en hoogte. Als de waarden voor twee van deze factoren bekend zijn, is het mogelijk om de derde te bepalen.

Tijd oplossen

    Schrijf deze formule op:

    Uiteindelijke snelheid = initiële snelheid + (versnelling vanwege zwaartekracht * tijd)

    Dit stelt dat de eindsnelheid die een projectiel bereikt, gelijk is aan de beginsnelheidwaarde plus het product van de versnelling vanwege de zwaartekracht en de tijd dat het object in beweging is. De versnelling door zwaartekracht is een universele constante. De waarde is ongeveer 32 voet (9,8 meter) per seconde. Dat beschrijft hoe snel een object per seconde versnelt als het van een hoogte in een vacuüm valt. "Tijd" is de hoeveelheid tijd dat het projectiel in vlucht is.

    Vereenvoudig de formule met korte symbolen zoals hieronder weergegeven:

    vf = v0 + a * t

    Vf, v0 en t staan ​​voor Final Velocity, Initial Velocity en Time. De letter "a" staat voor "Versnelling vanwege zwaartekracht". Door het verkorten van lange termijnen is het eenvoudiger om met deze vergelijkingen te werken.

    Los deze vergelijking voor t op door deze aan één kant van de vergelijking in de vorige stap te isoleren. De resulterende vergelijking luidt als volgt:

    t = (vf –v0) ÷ a

    Omdat de verticale snelheid nul is wanneer een projectiel zijn maximale hoogte bereikt (een naar boven gegooid object bereikt altijd nul snelheid op de piek van zijn traject), is de waarde voor vf nul.

    Vervang vf door nul om deze vereenvoudigde vergelijking op te leveren:

    t = (0 - v0) ÷ a

    Verminder dat om t = v0 ÷ a te krijgen. Hierin staat dat wanneer je een projectiel recht in de lucht gooit of schiet, je kunt bepalen hoe lang het duurt voordat het projectiel zijn maximale hoogte bereikt wanneer je de beginsnelheid kent (v0).

    Los deze vergelijking op, ervan uitgaande dat de beginsnelheid, of v0, 10 voet per seconde is, zoals hieronder wordt weergegeven:

    t = 10 ÷ a

    Omdat a = 32 voet per seconde in het kwadraat, wordt de vergelijking t = 10/32. In dit voorbeeld ontdek je dat het 0,31 seconden duurt voordat een projectiel zijn maximale hoogte bereikt wanneer de beginsnelheid 10 voet per seconde is. De waarde van t is 0,31.

Oplossen voor hoogte

    Noteer deze vergelijking:

    h = (v0 * t) + (a * (t * t) ÷ 2)

    Dit stelt dat de hoogte (h) van een projectiel gelijk is aan de som van twee producten - zijn beginsnelheid en de tijd dat het in de lucht is, en de versnellingsconstante en de helft van de tijd in het kwadraat.

    Sluit de bekende waarden voor t- en v0-waarden aan, zoals hieronder weergegeven: h = (10 * 0.31) + (32 * (10 * 10) ÷ 2)

    Los de vergelijking voor h op. De waarde is 1,603 voet. Een projectiel gooide met een beginsnelheid van 10 voet per seconde bereikt een hoogte van 1,603 voet in 0,31 seconden.

    Tips